Use of a CCD diffractometer in crystal structure determinations at high pressure

Author:

Dawson Alice,Allan David R.,Parsons Simon,Ruf Michael

Abstract

Although CCD instruments are now widely used in single-crystal diffraction, they have not been employed so extensively in crystallographic studies at high pressure. This paper describes some practical experience in the application of one CCD instrument, the Bruker–Nonius SMART APEX (a fixed-χ instrument). Centring a sample in a pressure cell is complicated by the restrictions on viewing the sample imposed by the body of the cell. The data collection strategy is defined by the requirements that (i) the incident beam must illuminate the sample and (ii) no more than 80% of the detector should be shaded by the body of the pressure cell. High-pressure diffraction images are contaminated by powder lines from the gasket and backing-disk materials, which form part of the pressure cell, and very intense spots from the diamond anvils. Procedures for the selection of spots for indexing are described. Integration routines attempt to harvest intensity data from regions of the detector that are shaded by the body of the pressure cell, and a procedure for generating dynamic masks is described. Shading also reduces the volume of reciprocal space that can be sampled, although this can be increased by performing data collections at more than one pressure-cell setting. Corrections for absorption are carried out in a two-stage procedure comprising an analytical correction for absorption by the cell, followed by a second multi-scan correction. Data sets collected at high pressure often contain some significant outliers; these can be identified during merging using a robust resistant weighting scheme, as described by Blessing [J. Appl. Cryst.(1997),30, 421–426].

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3