Generation and applications of structure envelopes for porous metal–organic frameworks

Author:

Yakovenko Andrey A.,Reibenspies Joseph H.,Bhuvanesh Nattamai,Zhou Hong-Cai

Abstract

The synthesis of polycrystalline, as opposed to single-crystalline, porous materials, such as zeolites and metal–organic frameworks (MOFs), is usually beneficial because the former have shorter synthesis times and higher yields. However, the structural determination of these materials using powder X-ray diffraction (PXRD) data is usually complicated. Recently, several methods for the structural investigation of zeolite polycrystalline materials have been developed, taking advantage of the structural characteristics of zeolites. Nevertheless, these techniques have rarely been applied in the structure determination of a MOF even though, with the electron-density contrast between the metal-containing units and pore regions, the construction of a structure envelope, the surface between high- and low-electron-density regions, should be straightforward for a MOF. Herein an example of such structure solution of MOFs based on PXRD data is presented. To start, a Patterson map was generated from powder diffraction intensities. From this map, structure factor phases for several of the strongest reflections were extracted and a structure envelope (SE) of a MOF was subsequently constructed. This envelope, together with all extracted reflection intensities, was used as input to theSUPERFLIPsoftware and a charge-flipping (CF) structure solution was performed. This structure solution method has been tested on the PXRD data of both activated (solvent removed from the pores;dmin= 0.78 Å) and as-synthesized (dmin= 1.20 Å) samples of HKUST-1. In both cases, our method has led to structure solutions. In fact, charge-flipping calculations using SE provided correct solutions in minutes (6 min for activated and 3 min for as-synthesized samples), while regular charge flipping or charge flipping with histogram matching calculation provided meaningful solutions only after several hours. To confirm the applicability of structure envelopes to low-symmetry MOFs, the structure of monoclinic PCN-200 has been solvedviaCF+SE calculations.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3