Crystal structures of 4-methyl-2-oxo-2H-chromene-7,8-diyl diacetate and 4-methyl-2-oxo-2H-chromene-7,8-diyl bis(pent-4-ynoate)

Author:

Akinyemi Akintunde,Thomas Courtney,Marsh Willis,Butcher Ray J.,Jasinski Jerry P.,Maynard-Smith Lystranne A.

Abstract

In the structures of the two title coumarin derivatives, C14H12O6, (1), and C20H16O6, (2), one with acetate and the other with pent-4-ynoate substituents, both the coumarin rings are almost planar. In (1), both acetate substituents are significantly rotated out of the coumarin plane to minimize steric repulsions. One acetate substituent is disordered over two equivalent conformations, with occupancies of 0.755 (17) and 0.245 (17). In (2), there are two pent-4-ynoate substituents, the C[triple-bond]C group of one being disordered over two positions with occupancies of 0.55 (2) and 0.45 (2). One of the pent-4-ynoate substituents is in an extended conformation, while the other is in a bent conformation. In this derivative, the planar part of both pent-4-ynoate substituents deviate from the coumarin plane. The packing of (1) is dominated by π–π stacking involving the coumarin rings and weak C—H...O contacts link the parallel stacks in the [101] direction. In contrast, in (2) the packing is dominated byR22(24) hydrogen bonds, involving the acidicspH atom and the oxo O atom, which link the molecules into centrosymmetric dimers. The bent conformation of one of the pent-4-ynoate substituents prevents the coumarin rings from engaging in π–π stacking.

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,General Chemistry

Reference34 articles.

1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.

2. An Alkyne–Aspirin Chemical Reporter for the Detection of Aspirin-Dependent Protein Modification in Living Cells

3. Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

4. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3