Author:
Nakatsuka Akihiko,Sugiyama Kazumasa,Yoneda Akira,Fujiwara Keiko,Yoshiasa Akira
Abstract
Single crystals of the title compound, the post-perovskite-type CaIrO3[calcium iridium(IV) trioxide], have been grown from a CaCl2flux at atmospheric pressure. The crystal structure consists of an alternate stacking of IrO6octahedral layers and CaO8hendecahedral layers along [010]. Chains formed by edge-sharing of IrO6octahedra (point-group symmetry 2/m..) run along [100] and are interconnected along [001] by sharing apical O atoms to build up the IrO6octahedral layers. Chains formed by face-sharing of CaO8hendecahedra (point-group symmetrym2m) run along [100] and are interconnected along [001] by edge-sharing to build up the CaO8hendecahedral layers. The IrO6octahedral layers and CaO8hendecahedral layers are interconnected by sharing edges. The present structure refinement using a high-power X-ray source confirms the atomic positions determined by Hiraiet al.(2009) [Z. Kristallogr.224, 345–350], who had revised our previous report [Sugaharaet al.(2008).Am. Mineral.93, 1148–1152]. However, the displacement ellipsoids of the Ir and Ca atoms based on the present refinement can be approximated as uniaxial ellipsoids elongating along [100], unlike those reported by Hiraiet al.(2009). This suggests that the thermal vibrations of the Ir and Ca atoms are mutually suppressed towards the Ir...Ca direction across the shared edge because of the dominant repulsion between the two atoms.
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献