Three-dimensional alkaline earth metal–organic framework poly[[μ-aqua-aquabis(μ3-carbamoylcyanonitrosomethanido)barium] monohydrate] and its thermal decomposition

Author:

Domasevitch Kostiantyn V.ORCID,Senchyk Ganna A.ORCID,Ponomarova Vira V.,Lysenko Andrey B.,Krautscheid HaraldORCID

Abstract

In the structure of the title salt, {[Ba(μ3-C3H2N3O2)2(μ-H2O)(H2O)]·H2O} n , the barium ion and all three oxygen atoms of the water molecules reside on a mirror plane. The hydrogen atoms of the bridging water and the solvate water molecules are arranged across a mirror plane whereas all atoms of the monodentate aqua ligand are situated on this mirror plane. The distorted ninefold coordination of the Ba ions is completed with four nitroso-, two carbonyl- and three aqua-O atoms at the distances of 2.763 (3)–2.961 (4) Å and it is best described as tricapped trigonal prism. The three-dimensional framework structure is formed by face-sharing of the trigonal prisms, via μ-nitroso- and μ-aqua-O atoms, and also by the bridging coordination of the anions via carbonyl-O atoms occupying two out of the three cap positions. The solvate water molecules populate the crystal channels and facilitate a set of four directional hydrogen bonds. The principal Ba–carbamoylcyanonitrosomethanido linkage reveals a rare example of the inherently polar binodal six- and three-coordinated bipartite topology (three-letter notation sit). It suggests that small resonance-stabilized cyanonitroso anions can be utilized as bridging ligands for the supramolecular synthesis of MOF solids. Such an outcome may be anticipated for a broader range of hard Lewis acidic alkaline earth metal ions, which perfectly match the coordination preferences of highly nucleophilic nitroso-O atoms. Thermal analysis reveals two-stage dehydration of the title compound (383 and 473 K) followed by decomposition with release of CO2, HCN and H2O at 558 K.

Funder

Ministry of Education and Science of Ukraine

Publisher

International Union of Crystallography (IUCr)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3