Crystal structure of hexakis(N,N-dimethylformamide-κO)iron(III) μ-chlorido-bis(trichloridocadmium)

Author:

Vassilyeva Olga Yu.ORCID,Kokozay Vladimir N.ORCID,Petrusenko Svitlana,Sobolev Alexandre N.

Abstract

The title compound, [Fe(C3H7NO)6][Cd2Cl7], crystallizes in the trigonal space group R\overline{3} and is assembled from discrete [Fe(DMF)6]3+ cations (DMF = N,N-dimethylformamide) and [Cd2Cl7]3− anions. In the cation, the iron(III) atom, located on a special position of \overline{3} site symmetry, is coordinated by six oxygen atoms from DMF ligands with all Fe—O distances being equal [2.0072 (16) Å]. A slight distortion of the octahedral environment of the metal comes from the cis O—Fe—O angles deviating from the ideal value of 90° [86.85 (7) and 93.16 (7)°] whilst all the trans angles are strictly 180°. The central Cl atom of the [Cd2Cl7]3− anion is also located on a special position of \overline{3} site symmetry and bridges two corner sharing, tetrahedrally coordinated CdII atoms. The two Cd atoms and the central Cl atom are colinear. The two sets of terminal chloride ligands on either side of the dumbbell-like anion are rotated relative to each other by 30°. In the crystal, the cations and anions, stacked one above the other along the c-axis direction, are held in place principally by electrostatic interactions. There are also C—H...Cl and C—H...O interactions, but these are rather weak. Of the six crystal structures reported to date for ionic salts of [Fe(DMF)6] n+ cations (n = 2, 3), five contain FeII ions. The title compound is the second example of a stable compound containing the [Fe(DMF)6]3+ cation. The existence of both [Fe(DMF)6]2+ and [Fe(DMF)6]3+ cations shows that the DMF ligand coordination sphere can accommodate changes in the charge and spin states of the metal centre.

Funder

Ministry of Education and Science of Ukraine

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3