Crystal engineering with short-chained amphiphiles: decasodium octa-n-butanesulfonate di-μ-chlorido-bis[dichloridopalladate(II)] tetrahydrate, a layered inorganic–organic hybrid material

Author:

Thoelen Felix,Frank Walter

Abstract

In the course of crystal-engineering experiments, crystals of the hydrated title salt, Na10[Pd2Cl6](C4H9SO3)8·4H2O, were obtained from a water/2-propanol solution of sodium n-butanesulfonate and sodium tetrachloridopalladate(II). In the crystal, sodium n-butanesulfonate anions and water molecules are arranged in an amphiphilic inverse bilayered cationic array represented by the formula {[Na10(C4H9SO3)8(H2O)4]2+} n . Within this lamellar array: (i) a hydrophilic layer region parallel to the bc plane is established by the Na+ cations, the H2O molecules (as aqua ligands in κNaNa′-bridging coordination mode) and the O3S– groups of the sulfonate ions, and (ii) hydrophobic regions are present containing all the n-butyl groups in an almost parallel orientation, with the chain direction approximately perpendicular to the aforementioned hydrophilic layer. Unexpectedly, the flat centrosymmetric [Pd2Cl6]2− anion in the structure is placed between the butyl groups, within the hydrophobic regions, but due to its appropriate length primarily bonded to the hydrophilic `inorganic' layer regions above and below the hydrophobic area via Pd—Clt...Na- and Pd—Clt...H—O(H)—Na-type (Clt is terminal chloride) interactions. In addition to these hydrogen-bonding interactions, both aqua ligands are engaged in charge-supported S—O...H—O hydrogen bonds of a motif characterized by the D 4 3(9) graph-set descriptor within the hydrophilic region. The crystal structure of the title compound is the first reported for a metal n-butanesulfonate.

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3