Author:
Lafuente Barbara,Yang Hexiong,Downs Robert T.
Abstract
The crystal structure of tetrawickmanite, ideally Mn2+Sn4+(OH)6[manganese(II) tin(IV) hexahydroxide], has been determined based on single-crystal X-ray diffraction data collected from a natural sample from Långban, Sweden. Tetrawickmanite belongs to the octahedral-framework group of hydroxide-perovskite minerals, described by the general formulaBB'(OH)6with a perovskite derivative structure. The structure differs from that of anABO3perovskite in that theAsite is empty while each O atom is bonded to an H atom. The perovskiteB-type cations split into orderedBandB′ sites, which are occupied by Mn2+and Sn4+, respectively. Tetrawickmanite exhibits tetragonal symmetry and is topologically similar to its cubic polymorph, wickmanite. The tetrawickmanite structure is characterized by a framework of alternating corner-linked [Mn2+(OH)6] and [Sn4+(OH)6] octahedra, both with point-group symmetry -1. Four of the five distinct H atoms in the structure are statistically disordered. The vacantAsite is in a cavity in the centre of a distorted cube formed by eight octahedra at the corners. However, the hydrogen-atom positions and their hydrogen bonds are not equivalent in every cavity, resulting in two distinct environments. One of the cavities contains a ring of four hydrogen bonds, similar to that found in wickmanite, while the other cavity is more distorted and forms crankshaft-type chains of hydrogen bonds, as previously proposed for tetragonal stottite, Fe2+Ge4+(OH)6.
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献