Author:
Jeroundi Dounia,Mazzah Ahmed,Hökelek Tuncer,El Hadrami El Mestafa,Renard Catherine,Haoudi Amal,Essassi El Mokhtar
Abstract
The title compound, C15H14N2O2, consists of pyrrole and benzodiazepine units linked to a propargyl moiety, where the pyrrole and diazepine rings adopt half-chair and boat conformations, respectively. The absolute configuration was assigned on the the basis of L-proline, which was used in the synthesis of benzodiazepine. In the crystal, weak C—HBnz...ODiazp and C—HProprg...ODiazp (Bnz = benzene, Diazp = diazepine and Proprg = propargyl) hydrogen bonds link the molecules into two-dimensional networks parallel to the bc plane, enclosing R
4
4(28) ring motifs, with the networks forming oblique stacks along the a-axis direction. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (49.8%), H...C/C...H (25.7%) and H...O/O...H (20.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—H...O hydrogen-bond energies are 38.8 (for C—HBnz...ODiazp) and 27.1 (for C—HProprg...ODiazp) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献