Rietveld-based energy-dispersive residual stress evaluation: analysis of complex stress fields σij(z)

Author:

Apel Daniel,Klaus Manuela,Genzel Martin,Genzel Christoph

Abstract

A method for the evaluation of strongly inhomogeneous residual stress fields in the near-surface region of polycrystalline materials is introduced, which exploits the full information content contained in energy-dispersive (ED) diffraction patterns. The macro-stress-induced diffraction line shifts ΔEψhklobserved in ED sin2ψ measurements are described by modeling the residual stress state σij(z) in real space, based on Rietveld's data analysis concept. Therefore, the proposed approach differs substantially from currently used methods for residual stress gradient analysis such as the `universal plot' method, which enable access to the Laplace stress profiles σij(τ). With the example of shot-peened samples made of either 100Cr6 steel or Al2O3, it is demonstrated that the simultaneous refinement of all diffraction patterns obtained in a sin2ψ measurement with hundreds of diffraction lines provides very stable solutions for the residual stress depth profiles. Furthermore, it is shown that the proposed evaluation concept even allows for consideration of the residual stress component σ33(z) in the thickness direction, which is difficult to detect by conventional sin2ψ analysis.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Reference45 articles.

1. Rietveld refinement of energy-dispersive synchrotron measurements

2. Birkholz, M. (2006). Thin Film Analysis by X-ray Scattering. Weinheim: Wiley-VCH.

3. Brown, P. J., Fox, A. G., Maslen, E. N., O'Keefe, M. A. & Willis, B. T. M. (2006). International Tables for Crystallography, Vol. C, 1st online ed., edited by E. Prince, pp. 554-595. Chester: International Union of Crystallography.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3