Structural evolution during the graphitization of polyacrylonitrile-based carbon fiber as revealed by small-angle X-ray scattering

Author:

Li Denghua,Lu Chunxiang,Wu Gangping,Hao Junjie,Yang Yu,Feng Zhihai,Li Xiutao,An Feng,Zhang Baoping

Abstract

On the basis of a Debye–Bueche correlation length analysis, the small-angle X-ray scattering (SAXS) intensity components due to different scatterers within polyacrylonitrile-based carbon fiber were determined and analyzed separately. According to Guinier's law and other related methods, an intensity component indicating a relatively large scatterer was ascribed to the amorphous structure within the boundaries of fibrils. Results indicated that the amorphous regions decreased in dimension and finally transformed completely into voids as the heat treatment temperature rose to 2773 K. The general trend for microvoids was a systematic change from many small voids to a few large voids, while the local density fluctuation within the samples weakened and finally faded away. In conclusion, the graphitization process of carbon fibers as revealed by SAXS is a systematic evolution from a quasi-two-phase system (fibril, amorphous region and microvoid within the fibril) of high-strength carbon fiber to the true two-phase structure (crystallite and microvoid) of high-modulus graphite fiber.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3