Author:
Li Denghua,Lu Chunxiang,Wu Gangping,Hao Junjie,Yang Yu,Feng Zhihai,Li Xiutao,An Feng,Zhang Baoping
Abstract
On the basis of a Debye–Bueche correlation length analysis, the small-angle X-ray scattering (SAXS) intensity components due to different scatterers within polyacrylonitrile-based carbon fiber were determined and analyzed separately. According to Guinier's law and other related methods, an intensity component indicating a relatively large scatterer was ascribed to the amorphous structure within the boundaries of fibrils. Results indicated that the amorphous regions decreased in dimension and finally transformed completely into voids as the heat treatment temperature rose to 2773 K. The general trend for microvoids was a systematic change from many small voids to a few large voids, while the local density fluctuation within the samples weakened and finally faded away. In conclusion, the graphitization process of carbon fibers as revealed by SAXS is a systematic evolution from a quasi-two-phase system (fibril, amorphous region and microvoid within the fibril) of high-strength carbon fiber to the true two-phase structure (crystallite and microvoid) of high-modulus graphite fiber.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献