Author:
Wallentin Jesper,Wilke Robin N.,Osterhoff Markus,Salditt Tim
Abstract
Simultaneous scanning Bragg contrast and small-angle ptychographic imaging of a single solar cell nanowire are demonstrated, using a nanofocused hard X-ray beam and two detectors. The 2.5 µm-long nanowire consists of a single-crystal InP core of 190 nm diameter, coated with amorphous SiO2and polycrystalline indium tin oxide. The nanowire was selected and aligned in real space using the small-angle scattering of the 140 × 210 nm X-ray beam. The orientation of the nanowire, as observed in small-angle scattering, was used to find the correct rotation for the Bragg condition. After alignment in real space and rotation, high-resolution (50 nm step) raster scans were performed to simultaneously measure the distribution of small-angle scattering and Bragg diffraction in the nanowire. Ptychographic reconstruction of the coherent small-angle scattering was used to achieve sub-beam spatial resolution. The small-angle scattering images, which are sensitive to the shape and the electron density of all parts of the nanowire, showed a homogeneous profile along the nanowire axis except at the thicker head region. In contrast, the scanning Bragg diffraction microscopy, which probes only the single-crystal InP core, revealed bending and crystalline inhomogeneity. Both systematic and non-systematic real-space movement of the nanowire were observed as it was rotated, which would have been difficult to reveal only from the Bragg scattering. These results demonstrate the advantages of simultaneously collecting and analyzing the small-angle scattering in Bragg diffraction experiments.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献