AlphaFold-predicted protein structures and small-angle X-ray scattering: insights from an extended examination of selected data in the Small-Angle Scattering Biological Data Bank

Author:

Brookes Emre,Rocco MattiaORCID,Vachette PatriceORCID,Trewhella JillORCID

Abstract

By providing predicted protein structures from nearly all known protein sequences, the artificial intelligence program AlphaFold (AF) is having a major impact on structural biology. While a stunning accuracy has been achieved for many folding units, predicted unstructured regions and the arrangement of potentially flexible linkers connecting structured domains present challenges. Focusing on single-chain structures without prosthetic groups, an earlier comparison of features derived from small-angle X-ray scattering (SAXS) data taken from the Small-Angle Scattering Biological Data Bank (SASBDB) is extended to those calculated using the corresponding AF-predicted structures. Selected SASBDB entries were carefully examined to ensure that they represented data from monodisperse protein solutions and had sufficient statistical precision and q resolution for reliable structural evaluation. Three examples were identified where there is clear evidence that the single AF-predicted structure cannot account for the experimental SAXS data. Instead, excellent agreement is found with ensemble models generated by allowing for flexible linkers between high-confidence predicted structured domains. A pool of representative structures was generated using a Monte Carlo method that adjusts backbone dihedral allowed angles along potentially flexible regions. A fast ensemble modelling method was employed that optimizes the fit of pair distance distribution functions [P(r) versus r] and intensity profiles [I(q) versus q] computed from the pool to their experimental counterparts. These results highlight the complementarity between AF prediction, solution SAXS and molecular dynamics/conformational sampling for structural modelling of proteins having both structured and flexible regions.

Funder

National Institutes of Health, National Institute of General Medical Sciences

National Science Foundation, Office of Advanced Cyberinfrastructure

Engineering and Physical Sciences Research Council

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3