Abstract
Electron backscatter diffraction (EBSD) is a technique used to measure crystallographic features in the scanning electron microscope. The technique is highly automated and readily accessible in many laboratories. EBSD pattern indexing is conventionally performed with raw electron backscatter patterns. These patterns are software processed to locate the band centres (and sometimes edges) from which the crystallographic index of each band is determined. Once a consistent index for many bands is obtained, the crystal orientation with respect to a reference sample and detector orientation can be determined and presented. Unfortunately, because of challenges related to crystal symmetry, there are limited available pattern-indexing approaches and this has probably hampered open development of the technique. In this article, a new method of pattern indexing is presented, based upon a method with which satellites locate themselves in the night sky, and its effectiveness is systematically demonstrated using dynamical simulations and real experimental patterns. The benefit of releasing this new algorithm as open-source software is demonstrated when this indexing process is utilized, together with dynamical solutions, to provide some of the first accuracy assessments of an indexing solution. In disclosing a new indexing algorithm, and software processing toolkit, the authors hope to open up EBSD developments to more users. The software code and example data are released alongside this article for third party developments.
Funder
Engineering and Physical Sciences Research Council
Royal Academy of Engineering
Shell
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献