Classifying and analyzing small-angle scattering data using weighted k nearest neighbors machine learning techniques

Author:

Archibald Richard K.ORCID,Doucet MathieuORCID,Johnston Travis,Young Steven R.,Yang Erika,Heller William T.ORCID

Abstract

A consistent challenge for both new and expert practitioners of small-angle scattering (SAS) lies in determining how to analyze the data, given the limited information content of said data and the large number of models that can be employed. Machine learning (ML) methods are powerful tools for classifying data that have found diverse applications in many fields of science. Here, ML methods are applied to the problem of classifying SAS data for the most appropriate model to use for data analysis. The approach employed is built around the method of weighted k nearest neighbors (wKNN), and utilizes a subset of the models implemented in the SasView package (https://www.sasview.org/) for generating a well defined set of training and testing data. The prediction rate of the wKNN method implemented here using a subset of SasView models is reasonably good for many of the models, but has difficulty with others, notably those based on spherical structures. A novel expansion of the wKNN method was also developed, which uses Gaussian processes to produce local surrogate models for the classification, and this significantly improves the classification accuracy. Further, by integrating a stochastic gradient descent method during post-processing, it is possible to leverage the local surrogate model both to classify the SAS data with high accuracy and to predict the structural parameters that best describe the data. The linking of data classification and model fitting has the potential to facilitate the translation of measured data into results for both novice and expert practitioners of SAS.

Funder

Oak Ridge National Laboratory

National Science Foundation

Horizon 2020

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3