Structural investigation of the thymidine phosphorylase fromSalmonella typhimuriumin the unliganded state and its complexes with thymidine and uridine

Author:

Balaev Vladislav V.,Lashkov Alexander A.,Gabdulkhakov Azat G.,Dontsova Maria V.,Seregina Tatiana A.,Mironov Alexander S.,Betzel Christian,Mikhailov Al'bert M.

Abstract

Highly specific thymidine phosphorylases catalyze the phosphorolytic cleavage of thymidine, with the help of a phosphate ion, resulting in thymine and 2-deoxy-α-D-ribose 1-phosphate. Thymidine phosphorylases do not catalyze the phosphorolysis of uridine, in contrast to nonspecific pyrimidine nucleoside phosphorylases and uridine phosphorylases. Understanding the mechanism of substrate specificity on the basis of the nucleoside is essential to support rational drug-discovery investigations of new antitumour and anti-infective drugs which are metabolized by thymidine phosphorylases. For this reason, X-ray structures of the thymidine phosphorylase fromSalmonella typhimuriumwere solved and refined: the unliganded structure at 2.05 Å resolution (PDB entry 4xr5), the structure of the complex with thymidine at 2.55 Å resolution (PDB entry 4yek) and that of the complex with uridine at 2.43 Å resolution (PDB entry 4yyy). The various structural features of the enzyme which might be responsible for the specificity for thymidine and not for uridine were identified. The presence of the 2′-hydroxyl group in uridine results in a different position of the uridine furanose moiety compared with that of thymidine. This feature may be the key element of the substrate specificity. The specificity might also be associated with the opening/closure mechanism of the two-domain subunit structure of the enzyme.

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,Genetics,Biochemistry,Structural Biology,Biophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3