Comparative structure analysis of the ETSi domain of ERG3 and its complex with the E74 promoter DNA sequence

Author:

Sharma Ruby,Gangwar Shanti P.,Saxena Ajay K.

Abstract

ERG3 (ETS-related gene) is a member of the ETS (erythroblast transformation-specific) family of transcription factors, which contain a highly conserved DNA-binding domain. The ETS family of transcription factors differ in their binding to promoter DNA sequences, and the mechanism of their DNA-sequence discrimination is little known. In the current study, crystals of the ETSi domain (the ETS domain of ERG3 containing a CID motif) in space group P41212 and of its complex with the E74 DNA sequence (DNA9) in space group C2221 were obtained and their structures were determined. Comparative structure analysis of the ETSi domain and its complex with DNA9 with previously determined structures of the ERGi domain (the ETS domain of ERG containing inhibitory motifs) in space group P65212 and of the ERGi–DNA12 complex in space group P41212 were performed. The ETSi domain is observed as a homodimer in solution as well as in the crystallographic asymmetric unit. Superposition of the structure of the ETSi domain on that of the ERGi domain showed a major conformational change at the C-terminal DNA-binding autoinhibitory (CID) motif, while minor changes are observed in the loop regions of the ETSi-domain structure. The ETSi–DNA9 complex in space group C2221 forms a structure that is quite similar to that of the ERG–DNA12 complex in space group P41212. Upon superposition of the complexes, major conformational changes are observed at the 5′ and 3′ ends of DNA9, while the conformation of the core GGA nucleotides was quite conserved. Comparison of the ETSi–DNA9 structure with known structures of ETS class 1 protein–DNA complexes shows the similarities and differences in the promoter DNA binding and specificity of the class 1 ETS proteins.

Funder

Department of Science and Technology, Ministry of Science and Technology

Council of Scientific and Industrial Research

University Grants Commission

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,Genetics,Biochemistry,Structural Biology,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How acidic amino acid residues facilitate DNA target site selection;Proceedings of the National Academy of Sciences;2023-01-12

2. Comparative structure analysis of the ETSi domain of ERG3 and its complex with the E74 promoter DNA sequence. Corrigendum;Acta Crystallographica Section F Structural Biology Communications;2019-04-29

3. Oncogenic ETS Factors in Prostate Cancer;Advances in Experimental Medicine and Biology;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3