Author:
Akparov Valery Kh.,Timofeev Vladimir I.,Kuranova Inna P.,Rakitina Tatiana V.
Abstract
A site-directed mutagenesis method has been used to obtain the G215S/A251G/T257A/D260G/T262D mutant of carboxypeptidase T from Thermoactinomyces vulgaris (CPT), in which the amino-acid residues of the S1′ subsite are substituted by the corresponding residues from pancreatic carboxypeptidase B (CPB). It was shown that the mutant enzyme retained the broad, mainly hydrophobic selectivity of wild-type CPT. The mutant containing the implanted CPB S1′ subsite was crystallized and its three-dimensional structure was determined at 1.29 Å resolution by X-ray crystallography. A comparison of the three-dimensional structures of CPT, the G215S/A251G/T257A/D260G/T262D CPT mutant and CPB showed that the S1′ subsite of CPT has not been distorted by the mutagenesis and adequately reproduces the structure of the CPB S1′ subsite. The CPB-like mutant differs from CPB in substrate selectivity owing to differences between the two enzymes outside the S1′ subsite. Moreover, the difference in substrate specificity between the enzymes was shown to be affected by residues other than those that directly contact the substrate.
Funder
Russian Science Foundation
Federal Agency of Scientific Organizations
Publisher
International Union of Crystallography (IUCr)
Subject
Condensed Matter Physics,Genetics,Biochemistry,Structural Biology,Biophysics