Structure of a superoxide dismutase from a tardigrade: Ramazzottius varieornatus strain YOKOZUNA-1

Author:

Sim Kee-Shin,Inoue TsuyoshiORCID

Abstract

Superoxide dismutase (SOD) is an essential and ubiquitous antioxidant protein that is widely present in biological systems. The anhydrobiotic tardigrades are some of the toughest micro-animals. They have an expanded set of genes for antioxidant proteins such as SODs. These proteins are thought to play an essential role in oxidative stress resistance in critical situations such as desiccation, although their functions at the molecular level have yet to be explored. Here, crystal structures of a copper/zinc-containing SOD (RvSOD15) from an anhydrobiotic tardigrade, Ramazzottius varieornatus strain YOKOZUNA-1, are reported. In RvSOD15, one of the histidine ligands of the catalytic copper center is replaced by a valine (Val87). The crystal structures of the wild type and the V87H mutant show that even though a histidine is placed at position 87, a nearby flexible loop can destabilize the coordination of His87 to the Cu atom. Model structures of other RvSODs were investigated and it was found that some of them are also unusual SODs, with features such as deletion of the electrostatic loop or β3 sheet and unusual metal-binding residues. These studies show that RvSOD15 and some other RvSODs may have evolved to lose the SOD function, suggesting that gene duplications of antioxidant proteins do not solely explain the high stress tolerance of anhydrobiotic tardigrades.

Funder

Japan Society for the Promotion of Science

Japan International Cooperation Agency

Osaka University, Institute for Protein Research, Osaka University

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,Genetics,Biochemistry,Structural Biology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3