Structural comparison of p-hydroxybenzoate hydroxylase (PobA) from Pseudomonas putida with PobA from other Pseudomonas spp. and other monooxygenases

Author:

Lazar John T.ORCID,Shuvalova Ludmilla,Rosas-Lemus Monica,Kiryukhina Olga,Satchell Karla J. F.,Minasov GeorgeORCID

Abstract

The crystal structure is reported of p-hydroxybenzoate hydroxylase (PobA) from Pseudomonas putida, a possible drug target to combat tetracycline resistance, in complex with flavin adenine dinucleotide (FAD). The structure was refined at 2.2 Å resolution with four polypeptide chains in the asymmetric unit. Based on the results of pairwise structure alignments, PobA from P. putida is structurally very similar to PobA from P. fluorescens and from P. aeruginosa. Key residues in the FAD-binding and substrate-binding sites of PobA are highly conserved spatially across the proteins from all three species. Additionally, the structure was compared with two enzymes from the broader class of oxygenases: 2-hydroxybiphenyl 3-monooxygenase (HbpA) from P. nitroreducens and 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO) from Mesorhizobium japonicum. Despite having only 14% similarity in their primary sequences, pairwise structure alignments of PobA from P. putida with HbpA from P. nitroreducens and MHPCO from M. japonicum revealed local similarities between these structures. Key secondary-structure elements important for catalysis, such as the βαβ fold, β-sheet wall and α12 helix, are conserved across this expanded class of oxygenases.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

International Union of Crystallography (IUCr)

Subject

Condensed Matter Physics,Genetics,Biochemistry,Structural Biology,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3