Protein–RNA affinity of ribosomal protein L1 mutants does not correlate with the number of intermolecular interactions

Author:

Tishchenko Svetlana,Kostareva Olga,Gabdulkhakov Azat,Mikhaylina Alisa,Nikonova Ekaterina,Nevskaya Natalia,Sarskikh Alena,Piendl Wolfgang,Garber Maria,Nikonov Stanislav

Abstract

Ribosomal protein L1, as part of the L1 stalk of the 50S ribosomal subunit, is implicated in directing tRNA movement through the ribosome during translocation. High-resolution crystal structures of four mutants (T217V, T217A, M218L and G219V) of the ribosomal protein L1 fromThermus thermophilus(TthL1) in complex with a specific 80 nt fragment of 23S rRNA and the structures of two of these mutants (T217V and G219V) in the RNA-unbound form are reported in this work. All mutations are located in the highly conserved triad Thr-Met-Gly, which is responsible for about 17% of all protein–RNA hydrogen bonds and 50% of solvent-inaccessible intermolecular hydrogen bonds. In the mutated proteins without bound RNA the RNA-binding regions show substantial conformational changes. On the other hand, in the complexes with RNA the structures of the RNA-binding surfaces in all studied mutants are very similar to the structure of the wild-type protein in complex with RNA. This shows that formation of the RNA complexes restores the distorted surfaces of the mutant proteins to a conformation characteristic of the wild-type protein complex. Domain I of the mutated TthL1 and helix 77 of 23S rRNA form a rigid body identical to that found in the complex of wild-type TthL1 with RNA, suggesting that the observed relative orientation is conserved and is probably important for ribosome function. Analysis of the complex structures and the kinetic data show that the number of intermolecular contacts and hydrogen bonds in the RNA–protein contact area does not correlate with the affinity of the protein for RNA and cannot be used as a measure of affinity.

Publisher

International Union of Crystallography (IUCr)

Subject

General Medicine,Structural Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3