Author:
Yu Jian,Ogata Daiki,Gai ZuoQi,Taguchi Seiichi,Tanaka Isao,Ooi Toshihiko,Yao Min
Abstract
Azo dyes are major synthetic dyestuffs with one or more azo bonds and are widely used for various industrial purposes. The biodegradation of residual azo dyesviaazoreductase-catalyzed cleavage is very efficient as the initial step of wastewater treatment. The structures of the complexes of azoreductases with various substrates are therefore indispensable to understand their substrate specificity and catalytic mechanism. In this study, the crystal structures of AzrA and of AzrC complexed with Cibacron Blue (CB) and the azo dyes Acid Red 88 (AR88) and Orange I (OI) were determined. As an inhibitor/analogue of NAD(P)H, CB was located on top of flavin mononucleotide (FMN), suggesting a similar binding manner as NAD(P)H for direct hydride transfer to FMN. The structures of the AzrC–AR88 and AzrC–OI complexes showed two manners of binding for substrates possessing a hydroxy group at theorthoor theparaposition of the azo bond, respectively, while AR88 and OI were estimated to have a similar binding affinity to AzrC from ITC experiments. Although the two substrates were bound in different orientations, the hydroxy groups were located in similar positions, resulting in an arrangement of electrophilic C atoms binding with a proton/electron-donor distance of ∼3.5 Å to N5 of FMN. Catalytic mechanisms for different substrates are proposed based on the crystal structures and on site-directed mutagenesis analysis.
Publisher
International Union of Crystallography (IUCr)
Subject
General Medicine,Structural Biology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献