HUG and SQUEEZE: using CRYSTALS to incorporate resonant scattering in the SQUEEZE structure-factor contributions to determine absolute structure

Author:

Cooper Richard I.,Flack Howard D.,Watkin David J.

Abstract

The resonant-scattering contributions to single-crystal X-ray diffraction data enable the absolute structure of crystalline materials to be determined. Crystal structures can be determined even if they contain considerably disordered regions because a correction is available via a discrete Fourier transform of the residual electron density to approximate the X-ray scattering from the disordered region. However, the corrected model cannot normally account for resonant scattering from atoms in the disordered region. Straightforward determination of absolute structure from crystals where the strongly resonantly scattering atoms are not resolved has therefore not been possible. Using an approximate resonant-scattering correction to the X-ray scattering from the disordered regions, we have developed and tested a procedure (HUG) to recover the absolute structure using conventional Flack x refinement or other post-refinement determination methods. Results show that in favourable cases the HUG method works well and the absolute structure can be correctly determined. It offers no useful improvement in cases where the original correction for the disordered region scattering density is problematic, for example, when a large fraction of the scattering density in the crystal is disordered, or when voids are not occupied equally by the disordered species. Crucially, however, if the approach does not work for a given structure, the statistics for the absolute structure measures are not improved, meaning it is unlikely to lead to misassignment of absolute structure.

Funder

EPSRC

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

Reference22 articles.

1. Novel pseudopolymorph of the active metabolite of perindopril

2. Carruthers, J. R. (1977). In Proceedings of the 4th European Crystallographic Meeting (ECM-4), Oxford, UK, 30 August-3 September 1977. Abstract Ob. 2.

3. The Chiral Auxiliary N-1-(1′-Naphthyl)ethyl-O-tert-butylhydroxylamine: A Chiral Weinreb Amide Equivalent

4. Absolute structure determination usingCRYSTALS

5. Cruickshank, D. W. J. (1961). In Computing Methods and the Phase Problem, edited by R. Pepinsky, J. M. Robertson & J. C. Speakman, Paper No. 6. Oxford: Pergamon Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3