Abstract
Three zinc iodide complexes based on phosphane ligands, namely diiodidobis(triphenylphosphane-κP)zinc(II), [ZnI2(C18H15P2)2], (1), diiodidobis[tris(4-methylphenyl)phosphane-κP]zinc(II), [ZnI2(C21H21P2)2], (2), and [bis(diphenylphosphoryl)methane-κ2O,O′]zinc(II) tetraiodidozinc(II), [Zn(C25H22O2P2)3][ZnI4], (3), have been synthesized and characterized. Single-crystal X-ray diffraction revealed that the structures of (1) and (2) are both mononuclear four-coordinated ZnI2complexes containing two monodentate phosphane ligands, respectively. Surprisingly, (2) spontaneously forms an acentric structure, suggesting it might be a potential second-order NLO material. The crystal structure of complex (3) is composed of two parts, namely a [Zn(dppmO2)3]2+cation [dppmO2is bis(diphenylphosphoryl)methane] and a [ZnI4]2−anion. The UV–Vis absorption spectra, thermal stabilities and photoluminescence spectra of the title complexes have also been studied. Time-dependent density functional theory (TD–DFT) calculations reveal that the low-energy UV absorption and the corresponding light emission both result from halide-ligand charge-transfer (XLCT) excited states.
Funder
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
521 Talent Cultivation of Zhejiang Sci-Tech University
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献