Abstract
The stoichiometry, X-ray structures and stability of four pharmaceutical cocrystals previously identified from liquid-assisted grinding (LAG) of 11-azaartemisinin (11-Aza; systematic name: 1,5,9-trimethyl-14,15,16-trioxa-11-azatetracyclo[10.3.1.04,13.08,13]hexadecan-10-one) with trans-cinnamic (Cin), maleic (Mal) and fumaric (Fum) acids are herein reported. trans-Cinnamic acid, a mono acid, forms 1:1 cocrystal 11-Aza:Cin (1, C15H23NO4·C9H8O2). Maleic acid forms both 1:1 cocrystal 11-Aza:Mal (2, C15H23NO4·C4H4O4), in which one COOH group is involved in self-catenation, and 2:1 cocrystal 11-Aza2:Mal (3, 2C15H23NO4·C4H4O4). Its isomer, fumaric acid, only affords 2:1 cocrystal 11-Aza2:Fum (4). All cocrystal formation appears driven by acid–lactam R
2
2(8) heterosynthons with short O—H...O=C hydrogen bonds [O...O = 2.56 (2) Å], augmented by weaker C=O...H—N contacts. Despite a better packing efficiency, cocrystal 3 is metastable with respect to 2, probably due to a higher conformational energy for the maleic acid molecule in its structure. In each case, the microcrystalline powders from LAG were useful in providing seeding for the single-crystal growth.
Funder
Research Grants Council, University Grants Committee
South African Medical Research Council
South African National Research Foundation
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献