Structural and spectroscopic characterization of two new blue luminescent pyridylbenzimidazole zinc(II) complexes

Author:

DeStefano Matthew R.,Geiger David K.

Abstract

Luminescent metal complexes are used in photooptical devices. Zinc(II) complexes are of interest because of the ability to tune their color, their high thermal stability and their favorable carrier transport character. In particular, some zinc(II) complexes with aryl diimine and/or heterocyclic ligands have been shown to emit brightly in the blue region of the spectrum. Zinc(II) complexes bearing derivatized imidazoles have been explored for possible optoelectronic applications. The structures of two zinc(II) complexes of 5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole (L), namely dichlorido(dimethylformamide-κO){5,6-dimethyl-2-(pyridin-2-yl-κN)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κN3}zinc(II) dimethylformamide monosolvate, [ZnCl2(C20H18N4)(C3H7NO)]·C3H7NO, (I), and bis(acetato-κ2O,O′){5,6-dimethyl-2-(pyridin-2-yl-κN)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κN3}zinc(II) ethanol monosolvate, [Zn(C2H3O2)2(C20H18N4)]·C2H5OH, (II), are reported. Complex (I) crystallized as a dimethylformamide solvate and exhibits a distorted trigonal bipyramidal coordination geometry. The coordination sphere consists of a bidentateLligand spanning axial to equatorial sites, two chloride ligands in equatorial sites, and anO-bound dimethylformamide ligand in the remaining axial site. The other complex, (II), crystallized as an ethanol solvate. The ZnIIatom has a distorted trigonal prismatic coordination geometry, with two bidentate acetate ligands occupying two edges and a bidentateLligand occupying the third edge of the prism. Complexes (I) and (II) emit in the blue region of the spectrum. The results of density functional theory (DFT) calculations suggest that the luminescence ofLresults from π*←π transitions and that the luminescence of the complexes results from interligand charge-transfer transitions. The orientation of the 2-(pyridin-2-yl) substituent with respect to the benzimidazole system was found to have an impact on the calculated HOMO–LUMO gap (HOMO is highest occupied molecular orbital and LUMO is lowest unoccupied molecular orbital).

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Inorganic Chemistry,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3