Structural characterization of Ni2Si pseudoepitaxial transrotational structures on [001] Si

Author:

Alberti Alessandra,Bongiorno Corrado,Alippi Paola,La Magna Antonino,Spinella Corrado,Rimini Emanuele

Abstract

The formation of pseudoepitaxial transrotational structures has been observed during the early stage of the reaction of thin Ni layers on [001] Si substrates. During the reaction, large Ni2Si domains, characterized by single bending contours, establish a close relationship with the silicon lattice. The silicide domain consists of a core region, along the bending contour, where the silicide layer has grown epitaxially with silicon. Outside the core, the planes, at first parallel to the bending contour, continuously bend over the range 15–20°, whilst those at 90° remain aligned with silicon across the interface. Owing to the cylindrical symmetry of those transrotational structures, transmission electron microscopy analyses provided direct evidence of the bending phenomenon and allowed a complete description of the fully relaxed domain structure. A non-conventional mechanism of strain relaxation has been proposed, which is competitive with respect to the usual formation of misfit dislocations. The competitive phenomenon consists of Ni2Si lattice bending and rearrangement of the interface to minimize the Gibbs free energy of the domain.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3