Accurate charge densities in days — use of synchrotrons, image plates and very low temperatures

Author:

Iversen B. B.,Larsen F. K.,Pinkerton A. A.,Martin A.,Darovsky A.,Reynolds P. A.

Abstract

Extensive synchrotron (28 K) and conventional sealed-tube (9 K) X-ray diffraction data have been collected on tetrakis(dimethylphosphinodithioato-S,S′)thorium(IV), [Th(S2PMe2)4]. The use of very low temperatures, well below those obtained with liquid-nitrogen cooling, is crucial for the accuracy of the data. This is due to minimization of temperature-dependent systematic errors such as TDS and anharmonicity, and extension and intensification of the data in reciprocal space. Comparison of structural parameters derived separately from the sealed-tube data and the synchrotron data shows good agreement. The synchrotron data are markedly superior when comparing refinement residuals, standard uncertainties (s.u.'s) of the data and s.u.'s of the derived parameters. However, the study suggests that there are still small uncorrected systematic errors in the data. The very large extent [(\sin\theta/\lambda)max = 1.77 Å−1] of the synchrotron data and the very low temperature at which they were collected makes it possible to separate anharmonic effects from electron-deformation effects even with only an X-ray data set at a single temperature. The electron density shows a large polarization of the outer Th core of d-type symmetry. This deformation is successfully modelled with contracted multipolar functions, which are only slightly correlated with anharmonic expansions in reciprocal space when using the full extent of the data. In the data collection more than a factor of 100 in speed is gained by use of image-plate area detectors at the synchrotron source compared with conventional sequential measurements. Thus accurate, very low temperature synchrotron-radiation diffraction data can now be measured within days, which makes electron-density studies of compounds beyond the first transition series more frequently within reach.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3