Molecular versus crystal symmetry in tri-substituted triazine, benzene and isocyanurate derivatives

Author:

Chong Samantha Y.,Seaton Colin C.,Kariuki Benson M.,Tremayne Maryjane

Abstract

The crystal structures of triethyl-1,3,5-triazine-2,4,6-tricarboxylate (I), triethyl-1,3,5-benzenetricarboxylate (II) and tris-2-hydroxyethyl isocyanurate (III) have been determined from conventional laboratory X-ray powder diffraction data using the differential evolution structure solution technique. The determination of these structures presented an unexpectedly wide variation in levels of difficulty, with only the determination of (III) being without complication. In the case of (I) structure solution resulted in a Rietveld refinement profile that was not ideal, but was subsequently rationalized by single-crystal diffraction as resulting from disorder. Refinement of structure (II) showed significant variation in side-chain conformation from the initial powder structure solution. Further investigation showed that the structure solution optimization had indeed been successful, and that preferred orientation had a dramatic effect on the structure-solution R-factor search surface. Despite the presence of identical side chains in (I) and (II), only the triazine-based system retains threefold molecular symmetry in the crystal structure. The lack of use of the heterocyclic N atom as a hydrogen-bond acceptor in this structure results in the formation of a similar non-centrosymmetric network to the benzene-based structure, but with overall three-dimensional centrosymmetry. The hydrogen-bonded layer structure of (III) is similar to that of other isocyanurate-based structures of this type.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3