Author:
Ling Christopher D.,Schmid Siegbert,Withers Ray L.,Thompson John G.,Ishizawa Nobuo,Kishimoto Shunji
Abstract
The structure of heptabismuth tritantalum octadecaoxide, Bi7Ta3O18, has been solved and refined using single-crystal X-ray diffraction data collected at a synchrotron source in conjunction with unit-cell and symmetry information derived from electron diffraction. The space-group symmetry is triclinic C1 but is very close to monoclinic C2/m. A twin component observed during data collection was successfully modelled in the refinement. The C2/m prototype fitted all the Rietveld-refinable features of a medium-resolution neutron powder diffraction pattern. The metal-atom array is approximately face-centred cubic (fluorite type), punctuated by regularly spaced displacement faults perpendicular to the [111]fluorite direction every 2.5 fluorite unit cells. The metal-atom populations and O-atom positions are fully ordered. The Ta5+ cations are octahedrally coordinated, with TaO6 octahedra forming columns. The remaining O atoms occupy distorted fluorite positions. The Bi3+ cations occupy octahedral, square pyramidal or trigonal prismatic sites within the O-atom array; strain in the latter coordination environment appears to be responsible for the lowering of symmetry from monoclinic to triclinic.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献