Author:
Chan E. J.,Goossens D. J.
Abstract
Single-crystal diffuse X-ray scattering from paracetamol polymorphs is successfully calculated with Monte Carlo (MC) models that are used to simulate the crystals. In order to obtain the correct model appropriate force constants are required that describe the interatomic potentials used in the MC algorithm. Coefficients for an empirical `Buckingham'-type formula are used to determine these force constants. These coefficients are subsequently refined using the least-squares method and are found to converge on similar values for both polymorphic forms. An investigation of the correlation space generated from each model provides what would be expected given that strong displacive correlations exist between the molecules comprising the densely hydrogen-bonded layers. More disordered motions between these layers are present in the model for form (II) as opposed to form (I). An investigation into the peculiarities of librational disorder was also conducted, however, correlation values turn out to be so small that any structural information concerning librational correlation is inconclusive. The purpose of this experiment was to identify if the diffuse scattering features could provide further insight into understanding the physical reasoning behind the metastability of form (II). The form (II) → (I) phase transition is also not currently well understood and usually phase transitional information can be obtained from pronounced diffuse scattering features. Since the diffuse scattering is modelled adequately using harmonic potentials it is our conjecture that the `diffuse' is essentially thermal in origin and does not afford any extra information about the form (II) → (I) phase transition.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献