Author:
Li Chonghea,Lu Xionggang,Ding Weizhong,Feng Liming,Gao Yonghui,Guo Ziming
Abstract
In this study a total of 186 complex halide systems were collected; the formabilities of ABX
3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF–MnF2) without perovskite structure and six systems (RbF–PbF2, CsF–BeF2, KCl–FeCl2, TlI–MnI2, RbI–SnI2, TlI–PbI2) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX
3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
842 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献