Direct observation of deuterium migration in crystalline-state reaction by single-crystal neutron diffraction. II. 3–1 Photoisomerization of a cobaloxime complex

Author:

Ohhara Takashi,Harada Jun,Ohashi Yuji,Tanaka Ichiro,Kumazawa Shintaro,Niimura Nobuo

Abstract

Single crystal neutron diffraction analysis of photo-exposed(3-cyanopropyl-d 2 α,α)-[(R)-1-phenylethylamine-d 11]bis(dimethylglyoximato-d 14)cobalt(III) was carried out in order to clarify the mechanism of the crystalline-state photoisomerization of the 3-cyanopropyl group bonded to the Co atom in some cobaloxime complexes. Before irradiation the two H atoms bonded to the C1 atom of the 3-cyanopropyl group were exchanged with the D atoms such as —CH2CH2CD2CN. On exposure to a xenon lamp, the cell dimensions of the crystal were gradually changed. After 7 d exposure the change became insignificantly small. The structure was analyzed by neutron diffraction. The 3-cyanopropyl group was transformed to the 1-cyanopropyl group such as —CD(CN)C(H1/2,D1/2)2CH3 with retention of the single-crystal form. This indicates that one of the D atoms bonded to C1 migrates to either position bonded to C2. The other atoms of the complex remained unchanged. These results indicate that photoisomerization proceeded in two steps: the 3-cyanopropyl group was isomerized to the 2-cyanopropyl group in the first place and then the 2-cyanopropyl group was transformed to the 1-cyanopropyl group. Moreover, it was made clear that the second-step isomerization was irreversible, since one of the D atoms was retained. The disordered structure at C2 is estimated to be caused by the interconversion between the 1-cyanopropyl group produced and its dehydrogenated olefin after the photoisomerization.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3