Author:
Verdonk M. L.,Voogd J. W.,Kanters J. A.,Kroon J.,den Besten R.,Brandsma L.,Leysen D.,Kelder J.
Abstract
The structural characteristics of ortho- and meta-substituted phenylpiperazines have been investigated in order to understand their actions at the serotonin 5-HT2c receptor. The crystal structures of the 4-methylated analogues of two phenylpiperazines that are already known as 5-HT2c ligands, 1-(1-naphthyl)-4-methylpiperazine (1NMP) and 1-[(3-trifluoromethyl)phenyl]-4-methylpiperazine (TFMPMP), and those of two novel 5-HT2c ligands, 1-(2-methoxyphenyl)piperazine (oMPP) and 1-(3-methoxyphenyl)piperazine (mMPP), are determined. Molecular mechanics calculations are performed to calculate the energy profiles of six phenylpiperazines for rotation about the central phenyl–nitrogen bond. The activities of several phenylpiperazines, in combination with their crystal structures and conformational characteristics, lead to the hypothesis that the conformation for which the piperazine ring and the phenyl ring are approximately co-planar should be the 5-HT2c receptor `activating' conformation. This hypothesis is then used to predict the activities of the two novel 5-HT2c ligands oMPP and mMPP. oMPP is predicted to be an antagonist at this receptor, whereas mMPP is predicted to be an agonist. As this prediction was confirmed by in vitro and in vivo tests, the proposed conformation is very likely to be responsible for the activation of the 5-HT2c receptor.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献