Exploration of the high-pressure behaviour of polycyclic aromatic hydrocarbons: naphthalene, phenanthrene and pyrene

Author:

Fabbiani Francesca P. A.,Allan David R.,Parsons Simon,Pulham Colin R.

Abstract

The structural response of three members of the family of polycyclic aromatic hydrocarbons (PAHs) to high-pressure recrystallization from dichloromethane solutions is presented. Recrystallization of naphthalene in the 0.2–0.6 GPa pressure range does not result in the formation of a new polymorph. Furthermore, direct compression of a single crystal to 2.1 GPa does not result in a phase transition. A density decrease of 18.2% over the 0.0–2.1 GPa pressure range is observed and the principal effect of pressure is to `tighten' the herringbone structural motif and decrease the size of void regions. A new polymorph of pyrene, form III, has been crystallized at 0.3 and at 0.5 GPa. Structural investigation of this new polymorph by means of topological analysis and comparison of Hirshfeld surfaces and fingerprint plots shows that intermolecular interactions are substantially different from those found in the ambient-pressure structures, and do not fit a previously established packing model for PAHs. Similar discrepancies are found for the high-pressure polymorph of phenanthrene, which is here re-investigated in greater detail. The structures of these high-pressure polymorphs are dominated by π...π stacking with a limited contribution from C—H...π (peripheral) interactions. It is perhaps not surprising that high-pressure polymorphs deviate from a model that has been devised for ambient-pressure structures, and this may be a direct consequence of the ability of pressure to modify and combine intermolecular interactions in ways that are not usually found at ambient pressure. This is achieved by modifying the relative orientations of molecules and by encouraging the formation of denser structures in which molecules pack together more efficiently.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3