A New Structural Transformation Mechanism in Catalytic Oxides

Author:

Gai P. L.

Abstract

During dynamic reduction of vanadyl pyrophosphate using in situ electron microscopy and diffraction under controlled reaction conditions, recurrent dislocation of atoms is observed, which leads to the formation of extended defects by a glide shear mechanism. Ordering of the glide shear defects leads to a new structure by transforming the orthorhombic vanadyl pyrophosphate into an anion-deficient tetragonal structure. These defects are formed close to the surface and the nature of the defects is such that they accommodate the misfit between the reduced surface layers containing anion vacancies and the underlying unreduced bulk. The glide shear planar defects (GS) essentially preserve anion vacancies and do not lead to a lattice collapse, and are distinct from the well known crystallographic shear planes (CS, which eliminate anion vacancies leading to lattice collapse). In important complex oxides such as vanadyl pyrophosphates, and in a variety of model ReO3- and V2O5-based oxides used as catalysts, my in situ studies suggest that glide shear is the most effective defect mechanism by which the catalysts accommodate nonstoichiometry and continue to operate in partial oxidation reactions. Anion vacancy formation resulting from the oxide reduction is the driving force for the generation of glide misfit defects and their ordering can give rise to new phases or structures in oxides. The studies have important implications in oxide catalysis and, more generally, in oxide crystallography.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3