Author:
Vegas Angel,Martin Raymond L.,Bevan D. J. M.
Abstract
The bixbyite structure (Mn2O3) (Ia\bar 3) is often described as a distorted face-centered cubic (f.c.c.) array of Mn atoms, with O atoms occupying 3/4 of the tetrahedral holes. The empty M
4 tetrahedra are centred at 16c. In anti-bixbyite structures (Mg3N2), cation vacancies are centred in empty N4 tetrahedra. If 16 hypothetical atoms were located at this site they would form the structure of γ-Si. This means that anti-bixbyite structures are ideally prepared to accommodate Si(Ge) atoms at these holes. Several compounds (Li3AlN2 and Li3ScN2) fully satisfy this expectation. They are really anti-bixbyites `stuffed' with Al(Sc). The presence of these atoms in 16c is illuminated in the light of the extended Zintl–Klemm concept (EZKC) [Vegas & García-Baonza (2007). Acta Cryst. B63, 339–345], from which a compound would be the result of `multiple resonance' pseudo-structures, emerging from electron transfers between any species pair (like or unlike atoms, cations or anions). The coordination-defect (CD) concept [Bevan & Martin (2008). J. Solid State Chem.
181, 2250–2259] is also consistent with the EZKC description of the pseudo-structures. A more profound insight into crystal structures is gained if one is not restricted to the contemplation of classical anions and cations in their conventional oxidation states.
Publisher
International Union of Crystallography (IUCr)
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献