Characterizing Steady-State Cardiovascular and Metabolic Responses of Recreational Climbers During Motorized Treadmill Climbing

Author:

Heil Daniel Paul

Abstract

Given that the popularity of indoor climbing exceeds that of outdoor climbing, health professionals need a better understanding of how these indoor climbing activities can be used to prescribe exercise. The primary goal of this study was to characterize both cardiovascular and metabolic responses of motorized treadmill climbing with respect to thresholds for heart rate as a percent of maximum (%HR) and metabolic equivalents (METs). Additionally, this study used these data to generate MET and energy expenditure (EE) prediction equations for prescription purposes. Methods: Twenty non-competitive recreational climbers (16 men; 4 women) were recruited to climb six combinations of “slow” and “fast” climbing speed (4.6-9.1 m/min) across three treadmill grades: vertical (90°), overhang or negative incline (85-80°), positive incline (95-100°). A portable metabolic system was worn by climbers during testing to measure HR and oxygen uptake (VO2), the latter of which was converted to EE and METs using standard formulae. Mean HR% and MET values were compared to intensity thresholds (65%, or 3 and 6 METs) using one-sample t-tests, while standard multiple regression techniques were used to predict EE and METs from a pool of variables (climbing treadmill speed and grade, body mass, gender. Results: HR% (70.0-85.4%) was >65% at all test conditions (P<0.01) and mean MET values exceeded the 3-MET threshold and was ≥6-MET threshold at all conditions (6.0-8.5 METs; P<0.01). Multiple prediction equations for both EE (R2=0.81; SEE=±0.83 kcals/min; P<0.001) and METs (R2=0.73; SEE=±0.6 METs; P<0.001) included speed, grade, and gender. Conclusions: The vigorous metabolic intensity for motorized treadmill climbing (≥6 METs) in this study was clearly sufficient to promote positive health and metabolic fitness in healthy adults. In addition, health professionals can use the EE and MET prediction equations to prescribe specific motorized treadmill climbing intensities to clients, as well as generate climbing-specific testing protocols.

Publisher

IOR Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3