Finite element and fatigue analysis of flexible pavements based on temperature profile modeling

Author:

Cho Seoyoung,Lakatos Éva

Abstract

The effect of temperature on asphalt pavement structure is of great importance due to the nature of binder used in the asphalt layers. An equivalent temperature is commonly applied to eliminate the effect of temperature dependence in calculations of mechanical properties of the asphalt and of the pavement. Equivalent temperatures, applied as constant values, are supposed to have the same effect on fatigue behavior of the pavement in the period of one year as the real varying weather conditions. The aim of the presented research was to compare the behavior of the pavement under realistic temperature data throughout a single year with the results of the traditional pavement design method. Temperature data were obtained from a previously established weather station. Binder viscosity and asphalt dynamic modulus were defined based on the temperature profile for asphalt layers divided into 19 sublayers. This subdivision was introduced to better reflect the changes in strength characteristics of the asphalt layers along the depth of the structure. Comparison with the simple calculation using the equivalent temperature method showed that the detailed model outlined in this paper can provide better prediction of the overall pavement structural capacity. The focus of this study is to apply asphalt layer discretization to reflect temperature variation and its influence on changes in strength properties of asphalt mixtures. Temperature at each sublayer was estimated using the German specification, dynamic modulus was determined using the Witczak model, and the structural analysis was performed employing the finite element method.

Publisher

Road and Bridge Research Institute

Reference17 articles.

1. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. National Cooperative Highway Research Program (NCHRP), 1-47A Report, Transportation Research Board, National Research Council, Washington, 2004

2. Guidelines for mathematical dimensioning of foundations of traffic surfaces with a course asphalt surface RDO. Research Society for Roads and Traffic, Berlin, 2009

3. Barber S.E.: Calculation of Maximum Pavement Temperatures from Weather Reports. Highway Research Board Bulletin, 168, 1957, 1-8

4. Rumney T.N., Jimenez R.A.: Pavement Temperatures in the Southwest. 50th Annual Meeting of the Highway Research Board, Washington, 1971

5. Southgate H.F., Deen R.C.: Temperature Distribution Within Asphalt Pavements and Its Relationship to Pavement Deflection. Highway Research Record, 291, 1969, 116-131

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3