DERIVATION OF EXPRESSION FOR PHOTOCURRENT DENSITY FOR NON-DESTRUCTIVE TESTING OF 3D PRINTING FILAMENT BY MEANS OF TERAHERTZ SPECTROSCOPY

Author:

Khoroshailo IuriiORCID,Zaichenko NataliiaORCID,Zaichenko OlgaORCID

Abstract

This report presents a revised expression for the photocurrent density in terahertz spectroscopy, which is a non-destructive testing technique of particular interest to the authors in the context of 3D printed parts. 3D printing, also known as additive manufacturing, involves creating three-dimensional objects based on computer-aided design (CAD) models. The process entails depositing, joining, or solidifying material under computer control, layer by layer. Defects in 3D printing, such as weak infill, gaps in thin walls, inconsistent extrusion, layer separation, and bed drop, can lead to low printing quality and render some printed parts unfit and unsafe for use. Moreover, the ability to tamper with internal layers without altering the exterior could result in the production of maliciously defective parts without detection. Therefore, it is crucial to test 3D printed details and filaments at each stage of processing using non-destructive methods. A comprehensive review of the relevant literature indicates the potential for enhancing measurement accuracy through various improvements in terahertz spectrometer models. The mathematical model for the photocurrent involves a convolution integral of the current density and the laser radiation pulse that irradiates the surface of the material under study. The expression within the integral incorporates parameters such as the duration of the optical pulse, carrier lifetime, and momentum relaxation time. By evaluating the integral, the result can be obtained as two terms, each being a product of an exponent and a complementary error function with the same parameters mentioned earlier. The calculation involves several steps, including a change of variables during integration. Verification using Maple software demonstrates agreement with analytical calculations and suggests a pathway for further refinement of the expression for the photocurrent density. The Maple program influenced the results by means of repeating same calculation with aid of computer and allowing to compare if analytical results are same and true, also it could be use for simulation and example calculation, for results graphical representation. The connection between the obtained mathematical expression and its relation to 3D printing (additive manufacturing) exists. The explanation is in that the 3D printer uses filament, filament has defects, defectoscopy of filament in the terahertz domain have models and methods. The research of defectoscopy models and methods is helpful to increase accuracy of measurement of filament defect parameters and account on it and improve the quality of 3D printed details.

Publisher

Anadolu Universitesi Bilim ve Teknoloji Dergisi-A: Uygulamali Bilimler ve Muhendislik

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3