ON THE EFFECTIVENESS OF PARAGRAPH VECTOR MODELS IN DOCUMENT SIMILARITY ESTIMATION FOR TURKISH NEWS CATEGORIZATION

Author:

YÜREKLİ Ali1ORCID

Affiliation:

1. Eskişehir Teknik Üniversitesi

Abstract

News categorization, which is a common application area of text classification, is the task of automatic annotation of news articles with predefined categories. In parallel with the rise of deep learning techniques in the field of machine learning, neural embedding models have been widely utilized to capture hidden relationships and similarities among textual representations of news articles. In this study, we approach the Turkish news categorization problem as an ad-hoc retrieval task and investigate the effectiveness of paragraph vector models to compute and utilize document-wise similarities of Turkish news articles. We propose an ensemble categorization approach that consists of three main stages, namely, document processing, paragraph vector learning, and document similarity estimation. Extensive experiments conducted on the TTC-3600 dataset reveal that the proposed system can reach up to 93.5% classification accuracy, which is a remarkable performance when compared to the baseline and state-of-the-art methods. Moreover, it is also shown that the Distributed Bag of Words version of Paragraph Vectors performs better than the Distributed Memory Model of Paragraph Vectors in terms of both accuracy and computational performance.

Publisher

Anadolu Universitesi Bilim ve Teknoloji Dergisi-A: Uygulamali Bilimler ve Muhendislik

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3