Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral YIG – Pt structures

Author:

Seleznev M., ,Nikulin Y.,Khivintsev Y.,Vysotskii S.,Kozhevnikov Aleksandr,Sakharov Valentin,Dudko Galina,Pavlov Evgenij,Filimonov Y., , , , , , , ,

Abstract

The purpose of this work is to find out the influence of three-magnon decay processes on the electromotive force (EMF (U)) generated by propagating magnetostatic surface waves (MSSW) with the help of the inverse spin Hall effect in the “yttrium-iron garnet (YIG) – platinum (Pt)” structure. Methods. The experiments were carried out using the delay line structures based on YIG films with the thickness of 8.8 and 14.6 µm, on the surface of which antennas were formed for MSSWs excitation and reception and a Pt film between antennas. Results. It was shown that the three-magnon parametric instability can significantly change the character of EMF dependences on frequency and on power of MSSW that resulted both from the effect of power limitation and from the participation of parametric spin waves (PSW) and secondary spin waves (SSW) in the processes of electron-magnon scattering on the YIG/Pt border. Conclusion. It was demonstrated that the effect of amplification of EMF generation at the frequencies that are close to the long-wavelength border of the MSSW spectrum is related with the PSW and SSW population of the region of anisotropic dipole-exchange spin waves spectrum, which is characterized by the presence of singularities in the magnon density of states (Van Hove singularities).

Publisher

Saratov State University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3