Tunable spin-wave delay line based on ferrite and vanadium dioxide

Author:

Nikitin Aleksei, ,Komlev Andrey,Nikitin Andrey,Ustinov Aleksej, , ,

Abstract

One of the key elements for modern microwave circuits is a delay line, which is widely utilized for the signal generation as well as processing. Spin-wave delay lines based on ferrite films provide a high delay time and small dimensions. Typically, the performance characteristics of such lines are tuned by the variation of an externally applied magnetic field characterized by some drawbacks. The phenomenon of a metal–insulator transition (MIT) in the phase change materials permits to improve the performance characteristics of the spin-wave delay lines. In particular, this concept allows to reduce the power consumption and improve the control speed of a delay time. Aim. Development of a tunable spin-wave delay line based on ferrite and vanadium dioxide films, as well as the study of its performance characteristics. Methods. Experimental investigations were carried out for the delay line composed of the yttrium iron garnet (YIG) and vanadium dioxide (VO2) films. The ferrite waveguide was fabricated from a single-crystal YIG film grown on a gallium gadolinium garnet substrate. A vanadium dioxide film was formed on a silicon dioxide substrate by DC reactive magnetron sputtering. The microwave measurements were carried out using the vector network analyzer R&S®R ZVA40. Results. It was shown that heating of the VO2 film induces a sufficient drop of its resistance that causes the transformation of the spin-wave dispersion characteristic. This leads to the decrease in the group velocity of the propagating waves providing a growth of a delay time. Namely, experimental structure of 5-mm length offers a tunable time delay range from 130 up to 150 ns at the operating frequency of 4.33 GHz. Conclusion. A proof-of-principle for the MIT control of the delay time composed on the YIG-VO2 structure has been presented. It was shown that a switch of VO2 film from the isolating into conducting state produces a 15% change in the delay time. The considered microwave delay lines look favorable for applications as a complimentary part to the traditional approach for general computing and microwave signal processing.

Publisher

Saratov State University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3