Classification of brain activity using synolitic networks

Author:

Vlasenko Daniil, ,Zaikin Aleksei,Zakharov Denis, ,

Abstract

Because the brain is an extremely complex hypernet of interacting macroscopic subnetworks, full-scale analysis of brain activity is a daunting task. Nevertheless, this task can be greatly simplified by analysing the correspondence between various patterns of macroscopic brain activity, for example, through functional magnetic resonance imaging (fMRI) scans, and the performance of particular cognitive tasks or pathological states. The purpose of this work is to present and validate a methodology of representing fMRI data in the form of graphs that effectively convey valuable insights into the interconnectedness of brain region activity for subsequent classification purposes. Methods. This paper explores the application of synolitic networks in the analysis of brain activity. We propose a method for constructing a graph, the vertices of which reflect fMRI voxels’ values, and the edges and edge weights reflect the relationships between fMRI voxels. Results and Conclusion. Based on the classification of fMRI data by graph properties, the effectiveness of the method in conveying important information for classification in the construction of graphs was shown.

Publisher

Saratov State University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3