Study of character of modulation instability in cyclotron resonance interaction of an electromagnetic wave with a counterpropagating rectilinear electron beam

Author:

Rostuntsova Alena, ,Ryskin Nikita,

Abstract

In this paper, the interaction of a monochromatic electromagnetic wave with a counterpropagating electron beam moving in an axial magnetic field is considered. The purpose of this study is to investigate the conditions for occurrence of modulation instability (MI) in such a system and to determine at which parameters of the incident wave the MI is absolute or convective. Methods. Theoretical analysis of the MI character is carried out by studying the asymptotic form of unstable perturbations using the saddle-point analysis. The analytical results are verified by numerical simulations. Results. Theoretically, the boundary of change in the character of MI on the plane of input signal parameters (amplitude and detuning of the frequency from the cyclotron resonance) is determined. Numerical simulations confirm that as the signal frequency increases, the regime of self-modulation, which corresponds to the absolute MI, is replaced by the stationary single-frequency transmission corresponding to the convective MI. The numerical results coincide with the analytical ones for the system, which is matched at the end. The matching is implemented by smooth increasing of the guiding magnetic field in the region of electron beam injection. Conclusion. Determining the analytical conditions for the implementation of the absolute MI is of practical interest, since the emerging self-modulation can lead to the generation of trains of pulses with the spectrum in the form of frequency combs.

Publisher

Saratov State University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3