Calculation of the cyclic characteristics of the electroencephalogram for investigation of the electrical activity of the brain

Author:

Aristov Vladimir, ,Kubryak Oleg,Stepanyan Ivan, ,

Abstract

The purpose of the study is experimental verification of the proposed EEG analysis method based on the construction of a connectivity graph of the analyzed signal, in which the amplitudes are displayed by vertices, and their relative position relative to each other by arcs. The display of the EEG signal in the graph structure causes the appearance of cyclic structures with the possibility of calculating their numerical characteristics. As a result of the study, criteria for initialization of the initial conditions of the counting algorithm have been developed. The following parameters were calculated: the number of cycles and the Euler number in the EEG recording. Coil representations of graphs are given. The proposed algorithm has a scaling parameter, the choice of which affects the final results. The second free parameter of the proposed algorithm is the degree of artificial signal coarsening. Variants of the algorithm application for multichannel EEG signals with multichannel signal processing by channel-by-channel detection of semantic units and construction of a generalized semantic connectivity graph are considered. An example of an analyzed multichannel EEG signal, which was pre-processed with reduction of all amplitudes to natural numbers in accordance with the calculated characteristics, is given. An example of an EEG of a subject with closed eyes during quiet wakefulness and an EEG of a subject with open eyes is given. In Conclusion, it is shown that the final indicators can vary significantly (from zero to tens of thousands or more) depending on the particular derivation of the EEG channel. Analysis of the cyclic structures of the electroencephalogram seems to be a potential way to assess various human states due to the possibility of distinguishing them using the proposed method. The study has a limited, pilot character.

Publisher

Saratov State University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3