Turing instability in the one-parameter Gierer–Meinhardt system

Author:

Revina Svetlana, ,Ryabov Anatoly,

Abstract

The purpose of this work is to find the region of necessary and sufficient conditions for diffusion instability on the parameter plane (τ, d) of the Gierer–Meinhardt system, where τ is the relaxation parameter, d is the dimensionless diffusion coefficient; to derive analytically the dependence of the critical wave number on the characteristic size of the spatial region; to obtain explicit representations of secondary spatially distributed structures, formed as a result of bifurcation of a spatially homogeneous equilibrium position, in the form of series in degrees of supercriticality. Methods. To find the region of Turing instability, methods of linear stability analysis are applied. To find secondary solutions (Turing structures), the Lyapunov– Schmidt method is used in the form developed by V. I. Yudovich. Results. Expressions for the critical diffusion coefficient in terms of the eigenvalues of the Laplace operator for an arbitrary bounded region are obtained. The dependence of the critical diffusion coefficient on the characteristic size of the region is found explicitly in two cases: when the region is an interval and a rectangle. Explicit expressions for the first terms of the expansions of the secondary stationary solutions with respect to the supercriticality parameter are constructed in the one-dimensional case, as well as for a rectangle, when one of the wave numbers is equal to zero. In these cases, sufficient conditions for a soft loss of stability are found, and examples of secondary solutions are given. Conclusion. A general approach is proposed for finding the region of Turing instability and constructing secondary spatially distributed structures. This approach can be applied to a wide class of mathematical models described by a system of two reaction–diffusion equations.

Publisher

Saratov State University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3