Ambient light at night causes desynchronization of rhythms in the sleep–wake switching model

Author:

Merkulova Ksenia, ,Postnov Dmitrij,

Abstract

The purpose of this study is to analyze the influence of the shape of the daily illumination profile on the synchronization of rhythms in the sleep–wake state switching model. Normally, the alternation of sleep and wakefulness of a person is synchronized with his circadian rhythm and with the 24-hour rhythm of illumination. There is, however, a lot of experimental evidence of a violation of this synchronism, both in the form of phase failures (for example, during air travel) and in the form of long-term mismatch of rhythms (for example, during shift work in production). Mathematical models of the process of switching between sleep and wakefulness also demonstrate the desynchronization of rhythms and are successfully used to optimize work schedules. At the same time, the influence of a number of factors on this process has not been sufficiently studied, including the nature of changes in illumination during the day. Methods. An analysis of the six-dimensional model under study shows that, in terms of nonlinear dynamics, the problem is reduced to finding and interpreting resonance regions on a three-dimensional torus. For the specific purposes of our work, it turned out to be convenient to estimate the ratio of three periods (24 hours, the circadian period, and the current duration of the sleep–wake cycle) by numerically integrating the model equations on a grid of parameter values using parallel computing technology. The main result of our work is that the presence of round-the-clock low-intensity illumination (that is, the addition of a zero-frequency signal to the daily light cycle) causes the circadian rhythm to desynchronize with respect to the daily one in a significant range of parameters. We have proposed an explanation of this effect based on the structure of the mathematical model. Conclusion. Our results raise at least two serious questions, the first of which is related to the physiological interpretation of one of the main variables of the model, sleep homeostasis, and the second is to refine the assumptions that are used in the model description of the photoreceptor response. In any case, there are interesting prospects for further research.

Publisher

Saratov State University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3