Dynamics of an artificial recurrent neural network for the problem of modeling a cognitive function

Author:

Maslennikov Oleg,

Abstract

The purpose of this work is to build an artificial recurrent neural network whose activity models a cognitive function relating to the comparison of two vibrotactile stimuli coming with a delay and to analyze dynamic mechanisms underlying its work. Methods of the work are machine learning, analysis of spatiotemporal dynamics and phase space. Results. Activity of the trained recurrent neural network models a cognitive function of the comparison of two stimuli with a delay. Model neurons exhibit mixed selectivity during the course of the task. In the multidimensional activity, the components are found each of which depends on a certain task parameter. Conclusion. The training of the artificial neural network to perform the funciton analogous to the experimentally observed process is accompanied by the emergence of dynamic properties of model neurons which are similar to those found in the experiment.

Publisher

Saratov State University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3