On the genetic divergence of two adjacent populations living in a homogeneous habitat

Author:

Frisman Efim, ,Kulakov Matvej,

Abstract

The purpose is to study the mechanisms leading to the genetic divergence, i.e. stable genetic differences between two adjacent populations coupled by migration of individuals. We considered the case when the fitness of individuals is strictly determined genetically by a single diallelic locus with alleles A and a, the population is panmictic and Mendel's laws of inheritance hold. The dynamic model contains three phase variables: concentration of allele A in each population and fraction (weight) of the first population in the total population size. We assume that the numbers of coupled populations change independently or strictly synchronously. In the first case, the growth rates are determined by fitness of homo- and heterozygotes, the mean fitness of the each population and the initial concentrations of alleles. In the second case, the growth rates are the same. Methods. To study the model, we used the qualitative theory of differential equations studies, including the construction of parametric and phase portraits, basins of attraction and bifurcation diagrams. We studied local bifurcations that provide the fundamental possibility of genetic divergence. Results. If heterozygote fitness is higher than homozygotes, then both populations are polymorphic with the same concentration of homologous alleles. If the heterozygotes fitness is reduced, then over time the populations will have the same monomorphism in one allele, regardless of the type of population changes. In this case, the dynamics is bistable. We showed that the divergence in the model is a result of subcritical pitchfork bifurcation of an unstable polymorphic state. As a result, the genetic divergent state is unstable and exists as part of the transient process to one of monomorphic state. Conclusion. Divergence is stable only for populations that maintain a population ratio in a certain way. In this case, it is preceded by a saddle-node bifurcation and dynamics is quad-stable, i.e. depending on the initial conditions, two types of stable monomorphism and divergence are possible simultaneously.

Publisher

Saratov State University

Subject

Applied Mathematics,Physics and Astronomy (miscellaneous),Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3